3.267 \(\int \frac{\sqrt{a+\frac{b}{x}}}{\sqrt{c+\frac{d}{x}}} \, dx\)

Optimal. Leaf size=81 \[ \frac{(b c-a d) \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+\frac{b}{x}}}{\sqrt{a} \sqrt{c+\frac{d}{x}}}\right )}{\sqrt{a} c^{3/2}}+\frac{x \sqrt{a+\frac{b}{x}} \sqrt{c+\frac{d}{x}}}{c} \]

[Out]

(Sqrt[a + b/x]*Sqrt[c + d/x]*x)/c + ((b*c - a*d)*ArcTanh[(Sqrt[c]*Sqrt[a + b/x])/(Sqrt[a]*Sqrt[c + d/x])])/(Sq
rt[a]*c^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0520053, antiderivative size = 81, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.174, Rules used = {375, 94, 93, 208} \[ \frac{(b c-a d) \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+\frac{b}{x}}}{\sqrt{a} \sqrt{c+\frac{d}{x}}}\right )}{\sqrt{a} c^{3/2}}+\frac{x \sqrt{a+\frac{b}{x}} \sqrt{c+\frac{d}{x}}}{c} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b/x]/Sqrt[c + d/x],x]

[Out]

(Sqrt[a + b/x]*Sqrt[c + d/x]*x)/c + ((b*c - a*d)*ArcTanh[(Sqrt[c]*Sqrt[a + b/x])/(Sqrt[a]*Sqrt[c + d/x])])/(Sq
rt[a]*c^(3/2))

Rule 375

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> -Subst[Int[((a + b/x^n)^p*(c +
 d/x^n)^q)/x^2, x], x, 1/x] /; FreeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && ILtQ[n, 0]

Rule 94

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/((m + 1)*(b*e - a*f)), x] - Dist[(n*(d*e - c*f))/((m + 1)*(b*e - a*
f)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[
m + n + p + 2, 0] && GtQ[n, 0] &&  !(SumSimplerQ[p, 1] &&  !SumSimplerQ[m, 1])

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sqrt{a+\frac{b}{x}}}{\sqrt{c+\frac{d}{x}}} \, dx &=-\operatorname{Subst}\left (\int \frac{\sqrt{a+b x}}{x^2 \sqrt{c+d x}} \, dx,x,\frac{1}{x}\right )\\ &=\frac{\sqrt{a+\frac{b}{x}} \sqrt{c+\frac{d}{x}} x}{c}-\frac{(b c-a d) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x} \sqrt{c+d x}} \, dx,x,\frac{1}{x}\right )}{2 c}\\ &=\frac{\sqrt{a+\frac{b}{x}} \sqrt{c+\frac{d}{x}} x}{c}-\frac{(b c-a d) \operatorname{Subst}\left (\int \frac{1}{-a+c x^2} \, dx,x,\frac{\sqrt{a+\frac{b}{x}}}{\sqrt{c+\frac{d}{x}}}\right )}{c}\\ &=\frac{\sqrt{a+\frac{b}{x}} \sqrt{c+\frac{d}{x}} x}{c}+\frac{(b c-a d) \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+\frac{b}{x}}}{\sqrt{a} \sqrt{c+\frac{d}{x}}}\right )}{\sqrt{a} c^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.0607665, size = 81, normalized size = 1. \[ \frac{(b c-a d) \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+\frac{b}{x}}}{\sqrt{a} \sqrt{c+\frac{d}{x}}}\right )}{\sqrt{a} c^{3/2}}+\frac{x \sqrt{a+\frac{b}{x}} \sqrt{c+\frac{d}{x}}}{c} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b/x]/Sqrt[c + d/x],x]

[Out]

(Sqrt[a + b/x]*Sqrt[c + d/x]*x)/c + ((b*c - a*d)*ArcTanh[(Sqrt[c]*Sqrt[a + b/x])/(Sqrt[a]*Sqrt[c + d/x])])/(Sq
rt[a]*c^(3/2))

________________________________________________________________________________________

Maple [B]  time = 0.024, size = 155, normalized size = 1.9 \begin{align*} -{\frac{x}{2\,c}\sqrt{{\frac{ax+b}{x}}}\sqrt{{\frac{cx+d}{x}}} \left ( \ln \left ({\frac{1}{2} \left ( 2\,acx+2\,\sqrt{ \left ( cx+d \right ) \left ( ax+b \right ) }\sqrt{ac}+ad+bc \right ){\frac{1}{\sqrt{ac}}}} \right ) ad-\ln \left ({\frac{1}{2} \left ( 2\,acx+2\,\sqrt{ \left ( cx+d \right ) \left ( ax+b \right ) }\sqrt{ac}+ad+bc \right ){\frac{1}{\sqrt{ac}}}} \right ) bc-2\,\sqrt{ \left ( cx+d \right ) \left ( ax+b \right ) }\sqrt{ac} \right ){\frac{1}{\sqrt{ \left ( cx+d \right ) \left ( ax+b \right ) }}}{\frac{1}{\sqrt{ac}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b/x)^(1/2)/(c+d/x)^(1/2),x)

[Out]

-1/2*((a*x+b)/x)^(1/2)*x*((c*x+d)/x)^(1/2)*(ln(1/2*(2*a*c*x+2*((c*x+d)*(a*x+b))^(1/2)*(a*c)^(1/2)+a*d+b*c)/(a*
c)^(1/2))*a*d-ln(1/2*(2*a*c*x+2*((c*x+d)*(a*x+b))^(1/2)*(a*c)^(1/2)+a*d+b*c)/(a*c)^(1/2))*b*c-2*((c*x+d)*(a*x+
b))^(1/2)*(a*c)^(1/2))/((c*x+d)*(a*x+b))^(1/2)/c/(a*c)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a + \frac{b}{x}}}{\sqrt{c + \frac{d}{x}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x)^(1/2)/(c+d/x)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(a + b/x)/sqrt(c + d/x), x)

________________________________________________________________________________________

Fricas [A]  time = 2.21108, size = 551, normalized size = 6.8 \begin{align*} \left [\frac{4 \, a c x \sqrt{\frac{a x + b}{x}} \sqrt{\frac{c x + d}{x}} - \sqrt{a c}{\left (b c - a d\right )} \log \left (-8 \, a^{2} c^{2} x^{2} - b^{2} c^{2} - 6 \, a b c d - a^{2} d^{2} + 4 \,{\left (2 \, a c x^{2} +{\left (b c + a d\right )} x\right )} \sqrt{a c} \sqrt{\frac{a x + b}{x}} \sqrt{\frac{c x + d}{x}} - 8 \,{\left (a b c^{2} + a^{2} c d\right )} x\right )}{4 \, a c^{2}}, \frac{2 \, a c x \sqrt{\frac{a x + b}{x}} \sqrt{\frac{c x + d}{x}} - \sqrt{-a c}{\left (b c - a d\right )} \arctan \left (\frac{2 \, \sqrt{-a c} x \sqrt{\frac{a x + b}{x}} \sqrt{\frac{c x + d}{x}}}{2 \, a c x + b c + a d}\right )}{2 \, a c^{2}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x)^(1/2)/(c+d/x)^(1/2),x, algorithm="fricas")

[Out]

[1/4*(4*a*c*x*sqrt((a*x + b)/x)*sqrt((c*x + d)/x) - sqrt(a*c)*(b*c - a*d)*log(-8*a^2*c^2*x^2 - b^2*c^2 - 6*a*b
*c*d - a^2*d^2 + 4*(2*a*c*x^2 + (b*c + a*d)*x)*sqrt(a*c)*sqrt((a*x + b)/x)*sqrt((c*x + d)/x) - 8*(a*b*c^2 + a^
2*c*d)*x))/(a*c^2), 1/2*(2*a*c*x*sqrt((a*x + b)/x)*sqrt((c*x + d)/x) - sqrt(-a*c)*(b*c - a*d)*arctan(2*sqrt(-a
*c)*x*sqrt((a*x + b)/x)*sqrt((c*x + d)/x)/(2*a*c*x + b*c + a*d)))/(a*c^2)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a + \frac{b}{x}}}{\sqrt{c + \frac{d}{x}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x)**(1/2)/(c+d/x)**(1/2),x)

[Out]

Integral(sqrt(a + b/x)/sqrt(c + d/x), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a + \frac{b}{x}}}{\sqrt{c + \frac{d}{x}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x)^(1/2)/(c+d/x)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(a + b/x)/sqrt(c + d/x), x)